Contenu

2Install nagios on ubuntu

5Post-Installation Modifications

5Monitoring Linux/Unix Machines

7Monitoring Publicly Available Services

13Verifying Your Configuration

13Restart nagios

13Starting Nagios

13Restarting Nagios

14Monitoring Windows Machines

Contenu

2Install nagios on ubuntu

5Post-Installation Modifications

5Monitoring Linux/Unix Machines

7Monitoring Publicly Available Services

13Verifying Your Configuration

13Restart nagios

13Starting Nagios

13Restarting Nagios

14Monitoring Windows Machines

Install nagios on ubuntu

Introduction

This guide is intended to provide you with simple instructions on how to install Nagios from source (code) on Ubuntu and have it monitoring your local machine inside of 20 minutes. No advanced installation options are discussed here - just the basics that will work for 95% of users who want to get started.

These instructions were written based on an Ubuntu 6.10 (desktop) installation. They should work for an Ubuntu 7.10 install as well.

What You'll End Up With

If you follow these instructions, here's what you'll end up with:

· Nagios and the plugins will be installed underneath /usr/local/nagios

· Nagios will be configured to monitor a few aspects of your local system (CPU load, disk usage, etc.)

· The Nagios web interface will be accessible at http://localhost/nagios/

Required Packages

Make sure you've installed the following packages on your Ubuntu installation before continuing.

· Apache 2

· GCC compiler and development libraries

· GD development libraries

You can use apt-get to install these packages by running the following commands:

sudo apt-get install apache2

sudo apt-get install build-essential

With Ubuntu 6.10, install the gd2 library with this command:

sudo apt-get install libgd2-dev

With Ubuntu 7.10, the gd2 library name has changed, so you'll need to use the following:

sudo apt-get install libgd2-xpm-dev

1) Create Account Information

Become the root user.

sudo -s

Create a new nagios user account and give it a password.

/usr/sbin/useradd -m nagios

passwd nagios

On Ubuntu server edition (6.01 and possible newer versions), you will need to also add a nagios group (it's not created by default). You should be able to skip this step on desktop editions of Ubuntu.

/usr/sbin/groupadd nagios

/usr/sbin/usermod -G nagios nagios

Create a new nagcmd group for allowing external commands to be submitted through the web interface. Add both the nagios user and the apache user to the group.

/usr/sbin/groupadd nagcmd

/usr/sbin/usermod -G nagcmd nagios

/usr/sbin/usermod -G nagcmd www-data

2) Download Nagios and the Plugins

Create a directory for storing the downloads.

mkdir ~/downloads

cd ~/downloads

Download the source code tarballs of both Nagios and the Nagios plugins (visit http://www.nagios.org/download/ for links to the latest versions). At the time of writing, the latest versions of Nagios and the Nagios plugins were 3.0.3 and 1.4.11, respectively.

wget http://osdn.dl.sourceforge.net/sourceforge/nagios/nagios-3.0.2.tar.gz

wget http://osdn.dl.sourceforge.net/sourceforge/nagiosplug/nagios-plugins-1.4.11.tar.gz

3) Compile and Install Nagios

Extract the Nagios source code tarball.

cd ~/downloads

tar xzf nagios-3.0.2.tar.gz

cd nagios-3.0.2

Run the Nagios configure script, passing the name of the group you created earlier like so:

./configure --with-command-group=nagcmd

Compile the Nagios source code.

make all

Install binaries, init script, sample config files and set permissions on the external command directory.

make install

make install-init

make install-config

make install-commandmode

Don't start Nagios yet - there's still more that needs to be done...

4) Customize Configuration

Sample configuration files have now been installed in the /usr/local/nagios/etc directory. These sample files should work fine for getting started with Nagios. You'll need to make just one change before you proceed...

Edit the /usr/local/nagios/etc/objects/contacts.cfg config file with your favorite editor and change the email address associated with the nagiosadmin contact definition to the address you'd like to use for receiving alerts.

vi /usr/local/nagios/etc/objects/contacts.cfg

5) Configure the Web Interface

Install the Nagios web config file in the Apache conf.d directory.

make install-webconf

Create a nagiosadmin account for logging into the Nagios web interface. Remember the password you assign to this account - you'll need it later.

htpasswd -c /usr/local/nagios/etc/htpasswd.users nagiosadmin

Restart Apache to make the new settings take effect.

/etc/init.d/apache2 reload

6) Compile and Install the Nagios Plugins

Extract the Nagios plugins source code tarball.

cd ~/downloads

tar xzf nagios-plugins-1.4.11.tar.gz

cd nagios-plugins-1.4.11

Compile and install the plugins.

./configure --with-nagios-user=nagios --with-nagios-group=nagios

make

make install

7) Start Nagios

Configure Nagios to automatically start when the system boots.

ln -s /etc/init.d/nagios /etc/rcS.d/S99nagios

Verify the sample Nagios configuration files.

/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

If there are no errors, start Nagios.

/etc/init.d/nagios start

8) Login to the Web Interface

You should now be able to access the Nagios web interface at the URL below. You'll be prompted for the username (nagiosadmin) and password you specified earlier.

http://localhost/nagios/

Click on the "Service Detail" navbar link to see details of what's being monitored on your local machine. It will take a few minutes for Nagios to check all the services associated with your machine, as the checks are spread out over time.

9) Other Modifications

If you want to receive email notifications for Nagios alerts, you need to install the mailx (Postfix) package.

sudo apt-get install mailx

You'll have to edit the Nagios email notification commands found in /usr/local/nagios/etc/objects/commands.cfg and change any '/bin/mail' references to '/usr/bin/mail'. Once you do that you'll need to restart Nagios to make the configuration changes live.

sudo /etc/init.d/nagios restart

Configuring email notifications is outside the scope of this documentation. Refer to your system documentation, search the web, or look to the NagiosCommunity.org wiki for specific instructions on configuring your Ubuntu system to send email messages to external addresses.

Post-Installation Modifications

Once you get Nagios installed and running properly, you'll no doubt want to start monitoring more than just your local machine. Check out the following docs for how to go about monitoring other things...

Monitoring Linux/Unix Machines

This document describes how you can monitor "private" services and attributes of Linux/UNIX servers, such as:

· CPU load

· Memory usage

· Disk usage

· Logged in users

· Running processes

· etc.

Publicly available services that are provided by Linux servers (HTTP, FTP, SSH, SMTP, etc.) can be monitored easily by following the documentation on monitoring publicly available services.

Note: These instructions assume that you've installed Nagios according to the quickstart guide. The sample configuration entries below reference objects that are defined in the sample config files (commands.cfg, templates.cfg, etc.) that are installed if you follow the quickstart.
You can find many addons for Nagios by visiting:

· Nagios.org
· SourceForge.net
· NagiosExchange.org
I'll give a brief introduction to a few of the addons that I've developed for Nagios...

NRPE
[image: image1.png]Nagios.

Chock sk | —»

chock_load |—»

Monitoring Host

Remote Linux/Unix Host

NRPE is an addon that allows you to execute plugins on remote Linux/Unix hosts. This is useful if you need to monitor local resources/attributes like disk usage, CPU load, memory usage, etc. on a remote host. Similiar functionality can be accomplished by using the check_by_ssh plugin, although it can impose a higher CPU load on the monitoring machine - especially if you are monitoring hundreds or thousands of hosts.

The NRPE addon and documentation can be found at http://www.nagios.org/.

NSCA
[image: image2.png]Nagios.

- s

Monitoring Host

Remote Linux/Unix Host

NSCA is an addon that allows you to send passive check results from remote Linux/Unix hosts to the Nagios daemon running on the monitoring server. This is very useful in distributed and redundant/failover monitoring setups.

The NRPE addon and documentation can be found at http://www.nagios.org/.

NDOUtils
[image: image3.png]Nagios

NDOUtils is an addon that allows you to store all status information from Nagios in a MySQL database. Multiple instances of Nagios can all store their information in a central database for centralized reporting. This will likely serve as the basis for a new PHP-based web interface for Nagios in the future.

The NDOUtils addon and documentation can be found at http://www.nagios.org/.

Monitoring Publicly Available Services

By "public" I mean services that are accessible across the network - either the local network or the greater Internet. Ex: HTTP, POP3, IMAP, FTP, and SSH… These services and applications, as well as their underlying protocols, can usually be monitored by Nagios without any special access requirements.

Private services, in contrast, cannot be monitored with Nagios without an intermediary agent of some kind. Ex: CPU load, memory usage, disk usage, current user count, process information, etc. These private services or attributes of hosts are not usually exposed to external clients. This situation requires that an intermediary monitoring agent be installed on any host that you need to monitor such information on. More information on:

· Monitoring Windows machines
· Monitoring Netware servers
· Monitoring Linux/Unix machines
Tip: Occassionally you will find that information on private services and applications can be monitored with SNMP. The SNMP agent allows you to remotely monitor otherwise private (and inaccessible) information about the host. For more information about monitoring services using SNMP, check out the documentation on monitoring switches and routers.
Note: These instructions assume that you've installed Nagios according to the quickstart guide. The sample configuration entries below reference objects that are defined in the sample commands.cfg and localhost.cfg config files.

Plugins For Monitoring Services

There are also a large number of contributed plugins that can be found in the contrib/ subdirectory of the plugin distribution. The NagiosExchange.org website hosts a number of additional plugins that have been written by users.

Plugins are easy to write. Read the documentation on developing plugins.

I'll walk you through monitoring some basic services that you'll probably use sooner or later. Each of these services can be monitored using one of the plugins that gets installed as part of the Nagios plugins distribution. Let's get started...

Creating A Host Definition

Before you can monitor a service, you first need to define a host that is associated with the service. You can place host definitions in any object configuration file specified by a cfg_file directive or placed in a directory specified by a cfg_dir directive. If you have already created a host definition, you can skip this step.

For this example, lets say you want to monitor a variety of services on a remote host. Let's call that host remotehost. The host definition can be placed in its own file or added to an already exiting object configuration file. Here's what the host definition for remotehost might look like:

define host{

use generic-host
; Inherit default values from a template

host_name remotehost
; The name we're giving to this host

alias
Some Remote Host ; A longer name associated with the host

address
192.168.1.50
; IP address of the host

hostgroups allhosts
; Host groups this host is associated with

}

Now that a definition has been added for the host that will be monitored, we can start defining services that should be monitored. As with host definitions, service definitions can be placed in any object configuration file.

Creating Service Definitions

For each service you want to monitor, you need to define a service in Nagios that is associated with the host definition you just created. You can place service definitions in any object configuration file specified by a cfg_file directive or placed in a directory specified by a cfg_dir directive.

Some example service definitions for monitoring common public service (HTTP, FTP, etc) are given below.

Monitoring HTTP

Chances are you're going to want to monitor web servers at some point - either yours or someone else's. The check_http plugin is designed to do just that. It understands the HTTP protocol and can monitor response time, error codes, strings in the returned HTML, server certificates, and much more.

The commands.cfg file contains a command definition for using the check_http plugin. It looks like this:

define command{

name

check_http

command_name
check_http

command_line
$USER1$/check_http -I $HOSTADDRESS$ $ARG1$

}

A simple service definition for monitoring the HTTP service on the remotehost machine might look like this:

define service{

use
generic-service
 ; Inherit default values from a template

host_name
remotehost

service_description
HTTP

check_command
check_http

}

This simple service definition will monitor the HTTP service running on remotehost. It will produce alerts if the web server doesn't respond within 10 seconds or if it returns HTTP errors codes (403, 404, etc.). That's all you need for basic monitoring. Pretty simple, huh?

[image: image4.png]

Tip: For more advanced monitoring, run the check_http plugin manually with --help as a command-line argument to see all the options you can give the plugin. This --help syntax works with all of the plugins I'll cover in this document.

A more advanced definition for monitoring the HTTP service is shown below. This service definition will check to see if the /download/index.php URI contains the string "latest-version.tar.gz". It will produce an error if the string isn't found, the URI isn't valid, or the web server takes longer than 5 seconds to respond.

define service{

use
generic-service
 ; Inherit default values from a template

host_name
remotehost

service_description
Product Download Link

check_command check_http!-u /download/index.php -t 5 -s "latest-version.tar.gz"

}

Monitoring FTP

When you need to monitor FTP servers, you can use the check_ftp plugin. The commands.cfg file contains a command definition for using the check_ftp plugin, which looks like this:

define command{

command_name
check_ftp

command_line
$USER1$/check_ftp -H $HOSTADDRESS$ $ARG1$

}

A simple service definition for monitoring the FTP server on remotehost would look like this:

define service{

use
generic-service
 ; Inherit default values from a template

host_name

remotehost

service_description
FTP

check_command
check_ftp

}

This service definition will monitor the FTP service and generate alerts if the FTP server doesn't respond within 10 seconds.

A more advanced service definition is shown below. This service will check the FTP server running on port 1023 on remotehost. It will generate an alert if the server doesn't respond within 5 seconds or if the server response doesn't contain the string "Pure-FTPd [TLS]".

define service{

use
 generic-service ; Inherit default values from a template

host_name

remotehost

service_description
Special FTP

check_command
check_ftp!-p 1023 -t 5 -e "Pure-FTPd [TLS]"

}

Monitoring SSH

When you need to monitor SSH servers, you can use the check_ssh plugin. The commands.cfg file contains a command definition for using the check_ssh plugin, which looks like this:

define command{

command_name
check_ssh

command_line
$USER1$/check_ssh $ARG1$ $HOSTADDRESS$

}

A simple service definition for monitoring the SSH server on remotehost would look like this:

define service{

use generic-service
 ; Inherit default values from a template

host_name

remotehost

service_description
SSH

check_command
check_ssh

}

This service definition will monitor the SSH service and generate alerts if the SSH server doesn't respond within 10 seconds.

A more advanced service definition is shown below. This service will check the SSH server and generate an alert if the server doesn't respond within 5 seconds or if the server version string string doesn't match "OpenSSH_4.2".

define service{

use
 generic-service ; Inherit default values from a template

host_name

remotehost

service_description
SSH Version Check

check_command
check_ssh!-t 5 -r "OpenSSH_4.2"

}

Monitoring SMTP

The check_smtp plugin can be using for monitoring your email servers. The commands.cfg file contains a command definition for using the check_smtp plugin, which looks like this:

define command{

command_name
check_smtp

command_line
$USER1$/check_smtp -H $HOSTADDRESS$ $ARG1$

}

A simple service definition for monitoring the SMTP server on remotehost would look like this:

define service{

use
generic-service
 ; Inherit default values from a template

host_name

remotehost

service_description
SMTP

check_command
check_smtp

}

This service definition will monitor the SMTP service and generate alerts if the SMTP server doesn't respond within 10 seconds.

A more advanced service definition is shown below. This service will check the SMTP server and generate an alert if the server doesn't respond within 5 seconds or if the response from the server doesn't contain "mygreatmailserver.com".

define service{

use
generic-service
 ; Inherit default values from a template

host_name

remotehost

service_description
SMTP Response Check

check_command
check_smtp!-t 5 -e "mygreatmailserver.com"

}

Monitoring POP3

The check_pop plugin can be using for monitoring the POP3 service on your email servers. The commands.cfg file contains a command definition for using the check_pop plugin, which looks like this:

define command{

command_name
check_pop

command_line
$USER1$/check_pop -H $HOSTADDRESS$ $ARG1$

}

A simple service definition for monitoring the POP3 service on remotehost would look like this:

define service{

use
generic-service
 ; Inherit default values from a template

host_name

remotehost

service_description
POP3

check_command
check_pop

}

This service definition will monitor the POP3 service and generate alerts if the POP3 server doesn't respond within 10 seconds.

A more advanced service definition is shown below. This service will check the POP3 service and generate an alert if the server doesn't respond within 5 seconds or if the response from the server doesn't contain "mygreatmailserver.com".

define service{

use

generic-service

; Inherit default values from a template

host_name

remotehost

service_description
POP3 Response Check

check_command
check_pop!-t 5 -e "mygreatmailserver.com"

}

Monitoring IMAP

The check_imap plugin can be using for monitoring IMAP4 service on your email servers. The commands.cfg file contains a command definition for using the check_imap plugin, which looks like this:

define command{

command_name
check_imap

command_line
$USER1$/check_imap -H $HOSTADDRESS$ $ARG1$

}

A simple service definition for monitoring the IMAP4 service on remotehost would look like this:

define service{

use
generic-service
 ; Inherit default values from a template

host_name

remotehost

service_description
IMAP

check_command
check_imap

}

This service definition will monitor the IMAP4 service and generate alerts if the IMAP server doesn't respond within 10 seconds.

A more advanced service definition is shown below. This service will check the IAMP4 service and generate an alert if the server doesn't respond within 5 seconds or if the response from the server doesn't contain "mygreatmailserver.com".

define service{

use generic-service

; Inherit default values from a template

host_name

remotehost

service_description
IMAP4 Response Check

check_command
check_imap!-t 5 -e "mygreatmailserver.com"

}

Restarting Nagios

Once you've added the new host and service definitions to your object configuration file(s), you're ready to start monitoring them. To do this, you'll need to verify your configuration and restart Nagios.

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that you don't (re)start Nagios until the verification process completes without any errors!

Verifying Your Configuration
In order to verify your configuration, run Nagios with the -v command line option like so:

/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

On errors, Nagios will often exit the pre-flight check and return to the command prompt after printing only the first error that it has encountered. This is done so that one error does not cascade into multiple errors as the remainder of the configuration data is verified. If you get any error messages you'll need to go and edit your configuration files to remedy the problem. Warning messages can generally be safely ignored, since they are only recommendations and not requirements.
Restart nagios

Starting Nagios

Init Script: The easiest way to start the Nagios daemon is

/etc/rc.d/init.d/nagios start

Manually: with the -d command line option like so:

/usr/local/nagios/bin/nagios -d /usr/local/nagios/etc/nagios.cfg

Restarting Nagios

Restarting/reloading is necessary when you modify your configuration files.

Init Script: The easiest way to restart the Nagios daemon

/etc/rc.d/init.d/nagios reload

Web Interface: by clicking the "Process Info" navigation link and selecting "Restart the Nagios process"
Manually: You can restart the Nagios process by sending it a SIGHUP signal like so:

kill -HUP <nagios_pid>

Stopping Nagios

Init Script: The easiest way is: /etc/rc.d/init.d/nagios stop

Web Interface: by clicking the "Process Info" navigation link and selecting "Shutdown the Nagios process"
Manually: kill <nagios_pid>

Monitoring Windows Machines

Monitoring private services or attributes of a Windows machine requires that you install an agent on it. This agent acts as a proxy between the Nagios plugin that does the monitoring and the actual service or attribute of the Windows machine. Without installing an agent on the Windows box, Nagios would be unable to monitor private services or attributes of the Windows box.

[image: image7.png]‘Windows Machine

Monitoring Server

Nagios.

Kt > NSClient++

For this example, we will be installing the NSClient++ addon on the Windows machine and using the check_nt plugin to communicate with the NSClient++ addon. The check_nt plugin should already be installed on the Nagios server if you followed the quickstart guide.

Other Windows agents (like NC_Net) could be used instead of NSClient++ if you wish - provided you change command and service definitions, etc. a bit. For the sake of simplicity I will only cover using the NSClient++ addon in these instructions.
Steps

There are several steps you'll need to follow in order to monitor a new Windows machine:

1. Perform first-time prerequisites

2. Install a monitoring agent on the Windows machine

3. Create new host and service definitions for monitoring the Windows machine

4. Restart the Nagios daemon

What's Already Done For You

To make your life a bit easier, a few configuration tasks have already been done for you:

· A check_nt command definition has been added to the commands.cfg file. This allows you to use the check_nt plugin to monitor Window services.

· A Windows server host template (called windows-server) has already been created in the templates.cfg file. This allows you to add new Windows host definitions in a simple manner.

The above-mentioned config files can be found in the /usr/local/nagios/etc/objects/ directory. You can modify the definitions in these and other definitions to suit your needs better if you'd like. However, I'd recommend waiting until you're more familiar with configuring Nagios before doing so. For the time being, just follow the directions outlined below and you'll be monitoring your Windows boxes in no time.

Prerequisites

The first time you configure Nagios to monitor a Windows machine, you'll need to do a bit of extra work. Remember, you only need to do this for the *first* Windows machine you monitor.

Edit the main Nagios config file.

vi /usr/local/nagios/etc/nagios.cfg

Remove the leading pound (#) sign from the following line in the main configuration file:

#cfg_file=/usr/local/nagios/etc/objects/windows.cfg

Save the file and exit.

What did you just do? You told Nagios to look to the /usr/local/nagios/etc/objects/windows.cfg to find additional object definitions. That's where you'll be adding Windows host and service definitions. That configuration file already contains some sample host, hostgroup, and service definitions. For the *first* Windows machine you monitor, you can simply modify the sample host and service definitions in that file, rather than creating new ones.

Installing the Windows Agent

Before you can begin monitoring private services and attributes of Windows machines, you'll need to install an agent on those machines. I recommend using the NSClient++ addon, which can be found at http://sourceforge.net/projects/nscplus. These instructions will take you through a basic installation of the NSClient++ addon, as well as the configuration of Nagios for monitoring the Windows machine.

1. Download the latest stable version of the NSClient++ addon from http://sourceforge.net/projects/nscplus

2. Unzip the NSClient++ files into a new C:\NSClient++ directory

3. Open a command prompt and change to the C:\NSClient++ directory

4. Register the NSClient++ system service with the following command:

nsclient++ /install

5. Install the NSClient++ systray with the following command ('SysTray' is case-sensitive):

nsclient++ SysTray

[image: image8.png]sclentzo (age n2ch Zoe sepE R

G 1500 | ecrey| D

% lou e o st i dosklcp

Clwsecan [i

6. Open the services manager and make sure the NSClientpp service is allowed to interact with the desktop (see the 'Log On' tab of the services manager). If it isn't already allowed to interact with the desktop, check the box to allow it to.

7. Edit the NSC.INI file (located in the C:\NSClient++ directory) and make the following changes:

· Uncomment all the modules listed in the [modules] section, except for CheckWMI.dll and RemoteConfiguration.dll

· Optionally require a password for clients by changing the 'password' option in the [Settings] section.

· Uncomment the 'allowed_hosts' option in the [Settings] section. Add the IP address of the Nagios server to this line, or leave it blank to allow all hosts to connect.

· Make sure the 'port' option in the [NSClient] section is uncommented and set to '12489' (the default port).

8. Start the NSClient++ service with the following command:

nsclient++ /start

9. If installed properly, a new icon should appear in your system tray. It will be a yellow circle with a black 'M' inside.

10. Success! The Windows server can now be added to the Nagios monitoring configuration...
Configuring Nagios

Now it's time to define some object definitions in your Nagios configuration files in order to monitor the new Windows machine.

Open the windows.cfg file for editing.

vi /usr/local/nagios/etc/objects/windows.cfg

Add a new host definition for the Windows machine that you're going to monitor. If this is the *first* Windows machine you're monitoring, you can simply modify the sample host definition in windows.cfg. Change the host_name, alias, and address fields to appropriate values for the Windows box.

define host{

use windows-server ; Inherit default values from a Windows server template (make sure you keep this line!)

host_name
winserver

alias

My Windows Server

address

192.168.1.2

}

Good. Now you can add some service definitions (to the same configuration file) in order to tell Nagios to monitor different aspects of the Windows machine. If this is the *first* Windows machine you're monitoring, you can simply modify the sample service definitions in windows.cfg.
Note: Replace "winserver" in the example definitions below with the name you specified in the host_name directive of the host definition you just added.
Add the following service definition to monitor the version of the NSClient++ addon that is running on the Windows server. This is useful when it comes time to upgrade your Windows servers to a newer version of the addon, as you'll be able to tell which Windows machines still need to be upgraded to the latest version of NSClient++.

define service{

use

generic-service

host_name

winserver

service_description
NSClient++ Version

check_command

check_nt!CLIENTVERSION

}

Add the following service definition to monitor the uptime of the Windows server.

define service{

use

generic-service

host_name

winserver

service_description
Uptime

check_command

check_nt!UPTIME

}

Add the following service definition to monitor the CPU utilization on the Windows server and generate a CRITICAL alert if the 5-minute CPU load is 90% or more or a WARNING alert if the 5-minute load is 80% or greater.

define service{

use

generic-service

host_name

winserver

service_description
CPU Load

check_command

check_nt!CPULOAD!-l 5,80,90

}

Add the following service definition to monitor memory usage on the Windows server and generate a CRITICAL alert if memory usage is 90% or more or a WARNING alert if memory usage is 80% or greater.

define service{

use

generic-service

host_name

winserver

service_description
Memory Usage

check_command

check_nt!MEMUSE!-w 80 -c 90

}

Add the following service definition to monitor usage of the C:\ drive on the Windows server and generate a CRITICAL alert if disk usage is 90% or more or a WARNING alert if disk usage is 80% or greater.

define service{

use

generic-service

host_name

winserver

service_description
C:\ Drive Space

check_command

check_nt!USEDDISKSPACE!-l c -w 80 -c 90

}

Add the following service definition to monitor the W3SVC service state on the Windows machine and generate a CRITICAL alert if the service is stopped.

define service{

use

generic-service

host_name

winserver

service_description
W3SVC

check_command

check_nt!SERVICESTATE!-d SHOWALL -l W3SVC

}

Add the following service definition to monitor the Explorer.exe process on the Windows machine and generate a CRITICAL alert if the process is not running.

define service{

use

generic-service

host_name

winserver

service_description
Explorer

check_command

check_nt!PROCSTATE!-d SHOWALL -l Explorer.exe

}

That's it for now. You've added some basic services that should be monitored on the Windows box. Save the configuration file.
Password Protection

If you specified a password in the NSClient++ configuration file on the Windows machine, you'll need to modify the check_nt command definition to include the password. Open the commands.cfg file for editing.

vi /usr/local/nagios/etc/commands.cfg

Change the definition of the check_nt command to include the "-s <PASSWORD>" argument (where PASSWORD is the password you specified on the Windows machine) like this:

define command{

command_name
check_nt

command_line
$USER1$/check_nt -H $HOSTADDRESS$ -p 12489 -s PASSWORD -v $ARG1$ $ARG2$

}

Save the file.

Restarting Nagios

Monitoring Routers and Switches

Some cheaper "unmanaged" switches and hubs don't have IP addresses and are essentially invisible on your network, so there's not any way to monitor them. More expensive switches and routers have addresses assigned to them and can be monitored by pinging them or using SNMP to query status information.
Switches and routers can be monitored easily by "pinging" them to determine packet loss, RTA, etc. If your switch supports SNMP, you can monitor port status, etc. with the check_snmp plugin and bandwidth (if you're using MRTG) with the check_mrtgtraf plugin.

The check_snmp plugin will only get compiled and installed if you have the net-snmp and net-snmp-utils packages installed on your system. Make sure the plugin exists in /usr/local/nagios/libexec before you continue. If it doesn't, install net-snmp and net-snmp-utils and recompile/reinstall the Nagios plugins.

Steps

There are several steps you'll need to follow in order to monitor a new router or switch:

1. Perform first-time prerequisites

2. Create new host and service definitions for monitoring the device

3. Restart the Nagios daemon

What's Already Done For You

To make your life a bit easier, a few configuration tasks have already been done for you:

· Two command definitions (check_snmp and check_local_mrtgtraf) have been added to the commands.cfg file. These allows you to use the check_snmp and check_mrtgtraf plugins to monitor network routers.

· A switch host template (called generic-switch) has already been created in the templates.cfg file. This allows you to add new router/switch host definitions in a simple manner.

The above-mentioned config files can be found in the /usr/local/nagios/etc/objects/ directory. You can modify the definitions in these and other definitions to suit your needs better if you'd like. However, I'd recommend waiting until you're more familiar with configuring Nagios before doing so. For the time being, just follow the directions outlined below and you'll be monitoring your network routers/switches in no time.

Prerequisites

The first time you configure Nagios to monitor a network switch, you'll need to do a bit of extra work. Remember, you only need to do this for the *first* switch you monitor.

Edit the main Nagios config file.

vi /usr/local/nagios/etc/nagios.cfg

Remove the leading pound (#) sign from the following line in the main configuration file:

#cfg_file=/usr/local/nagios/etc/objects/switch.cfg

Save the file and exit.

What did you just do? You told Nagios to look to the /usr/local/nagios/etc/objects/switch.cfg to find additional object definitions. That's where you'll be adding host and service definitions for routers and switches. That configuration file already contains some sample host, hostgroup, and service definitions. For the *first* router/switch you monitor, you can simply modify the sample host and service definitions in that file, rather than creating new ones.

Configuring Nagios

You'll need to create some object definitions in order to monitor a new router/switch.

Open the switch.cfg file for editing.

vi /usr/local/nagios/etc/objects/switch.cfg

Add a new host definition for the switch that you're going to monitor. If this is the *first* switch you're monitoring, you can simply modify the sample host definition in switch.cfg. Change the host_name, alias, and address fields to appropriate values for the switch.

define host{

use generic-switch
; Inherit default values from a template

host_name linksys-srw224p ; The name we're giving to this switch

alias Linksys SRW224P Switch ; A longer name associated with switch

address

192.168.1.253
; IP address of the switch

hostgroups allhosts,switches ;Host groups this switch is associated with

}

Monitoring Services

Now you can add some service definitions (to the same configuration file) to monitor different aspects of the switch. If this is the *first* switch you're monitoring, you can simply modify the sample service definition in switch.cfg.

Note: Replace "linksys-srw224p" in the example definitions below with the name you specified in the host_name directive of the host definition you just added.
Monitoring Packet Loss and RTA

Add the following service definition in order to monitor packet loss and round trip average between the Nagios host and the switch every 5 minutes under normal conditions.

define service{

use
generic-service
; Inherit values from a template

host_name
linksys-srw224p
; ame of the host the service is asso

service_description
PING

; The service description

check_command

check_ping!200.0,20%!600.0,60%
; The command used to monitor the service

normal_check_interval
5
; Check the service every 5 minutes under normal conditions

retry_check_interval
1
; Re-check the service every minute until its final/hard state is determined

}

This service will be:

· CRITICAL if the round trip average (RTA) is greater than 600 milliseconds or the packet loss is 60% or more

· WARNING if the RTA is greater than 200 ms or the packet loss is 20% or more

· OK if the RTA is less than 200 ms and the packet loss is less than 20%

Monitoring SNMP Status Information

If your switch or router supports SNMP, you can monitor a lot of information by using the check_snmp plugin. If it doesn't, skip this section.

Add the following service definition to monitor the uptime of the switch.

define service{

use

generic-service
; Inherit values from a template

host_name

linksys-srw224p

service_description
Uptime

check_command

check_snmp!-C public -o sysUpTime.0

}

In the check_command directive of the service definition above, the "-C public" tells the plugin that the SNMP community name to be used is "public" and the "-o sysUpTime.0" indicates which OID should be checked.

If you want to ensure that a specific port/interface on the switch is in an up state, you could add a service definition like this:

define service{

use

generic-service
; Inherit values from a template

host_name
linksys-srw224p

service_description
Port 1 Link Status

check_command
check_snmp!-C public -o ifOperStatus.1 -r 1 -m RFC1213-MIB

}

In the example above, the "-o ifOperStatus.1" refers to the OID for the operational status of port 1 on the switch. The "-r 1" option tells the check_snmp plugin to return an OK state if "1" is found in the SNMP result (1 indicates an "up" state on the port) and CRITICAL if it isn't found. The "-m RFC1213-MIB" is optional and tells the check_snmp plugin to only load the "RFC1213-MIB" instead of every single MIB that's installed on your system, which can help speed things up.

That's it for the SNMP monitoring example. There are a million things that can be monitored via SNMP, so its up to you to decide what you need and want to monitor. Good luck!

[image: image5.png]

Tip: You can usually find the OIDs that can be monitored on a switch by running the following command (replace 192.168.1.253 with the IP address of the switch): snmpwalk -v1 -c public 192.168.1.253 -m ALL .1

Monitoring Bandwidth / Traffic Rate

If you're monitoring bandwidth usage on your switches or routers using MRTG, you can have Nagios alert you when traffic rates exceed thresholds you specify. The check_mrtgtraf plugin (which is included in the Nagios plugins distribution) allows you to do this.

You'll need to let the check_mrtgtraf plugin know what log file the MRTG data is being stored in, along with thresholds, etc. In my example, I'm monitoring one of the ports on a Linksys switch. The MRTG log file is stored in /var/lib/mrtg/192.168.1.253_1.log. Here's the service definition I use to monitor the bandwidth data that's stored in the log file...

define service{

use

generic-service
; Inherit values from a template

host_name

linksys-srw224p

service_description
Port 1 Bandwidth Usage

check_command

check_local_mrtgtraf!/var/lib/mrtg/192.168.1.253_1.log!AVG!1000000,2000000!5000000,5000000!10

}

In the example above, the "/var/lib/mrtg/192.168.1.253_1.log" option that gets passed to the check_local_mrtgtraf command tells the plugin which MRTG log file to read from. The "AVG" option tells it that it should use average bandwidth statistics. The "1000000,2000000" options are the warning thresholds (in bytes) for incoming traffic rates. The "5000000,5000000" are critical thresholds (in bytes) for outgoing traffic rates. The "10" option causes the plugin to return a CRITICAL state if the MRTG log file is older than 10 minutes (it should be updated every 5 minutes).

Save the file.

Restarting Nagios

[image: image9.png]Nagios cGls

Daemon

T

N
—
Main Config Filo |

~—

N

Rosource File(s) Objoct Dafinition
File(s)

Configuration Overview

Sample configuration files are installed in the /usr/local/nagios/etc/ directory when you follow the quickstart installation guide.
Main Configuration File

The main configuration file contains a number of directives that affect how the Nagios daemon operates. This config file is read by both the Nagios daemon and the CGIs. This is where you're going to want to get started in your configuration adventures.

Documentation for the main configuration file can be found here.

Resource File(s)

Resource files can be used to store user-defined macros. The main point of having resource files is to use them to store sensitive configuration information (like passwords), without making them available to the CGIs.

You can specify one or more optional resource files by using the resource_file directive in your main configuration file.

Object Definition Files

Object definition files are used to define hosts, services, hostgroups, contacts, contactgroups, commands, etc. This is where you define all the things you want monitor and how you want to monitor them.

You can specify one or more object definition files by using the cfg_file and/or cfg_dir directives in your main configuration file.

An introduction to object definitions, and how they relate to each other, can be found here.

CGI Configuration File

The CGI configuration file contains a number of directives that affect the operation of the CGIs. It also contains a reference the main configuration file, so the CGIs know how you've configured Nagios and where your object defintions are stored.

Main Configuration File
· Lines that start with a '#' character -> comments
· Variables names must begin at the start of the line - no white space is allowed before the name

· Variable names are case-sensitive

Sample Configuration File /usr/local/nagios/etc/nagios.cfg)
Config File Location

The main configuration file is usually named nagios.cfg and located in the /usr/local/nagios/etc/ directory.

Configuration File Variables

Below you will find descriptions of each main Nagios configuration file option...

 Plugins

Plugins are compiled executables or scripts (Perl scripts, shell scripts, etc.) that can be run from a command line to check the status or a host or service. Nagios uses the results from plugins to determine the current status of hosts and services on your network.

Nagios will execute a plugin whenever there is a need to check the status of a service or host. The plugin does something (notice the very general term) to perform the check and then simply returns the results to Nagios. Nagios will process the results that it receives from the plugin and take any necessary actions (running event handlers, sending out notifications, etc).

Plugins As An Abstraction Layer

[image: image6.png]Monitoring Logic.

Monitored Entiies

Plugins act as an abstraction layer between the monitoring logic present in the Nagios daemon and the actual services and hosts that are being monitored.

The upside of this type of plugin architecture is that you can monitor just about anything you can think of. If you can automate the process of checking something, you can monitor it with Nagios. There are already a lot of plugins that have been created in order to monitor basic resources such as processor load, disk usage, ping rates, etc. If you want to monitor something else, take a look at the documentation on writing plugins and roll your own. Its simple!

The downside to this type of plugin architecture is the fact that Nagios has absolutely no idea what it is that you're monitoring. You could be monitoring network traffic statistics, data error rates, room temperate, CPU voltage, fan speed, processor load, disk space, or the ability of your super-fantastic toaster to properly brown your bread in the morning... Nagios doesn't understand the specifics of what's being monitored - it just tracks changes in the state of those resources. Only the plugins themselves know exactly what they're monitoring and how to perform the actual checks.

What Plugins Are Available?

There are plugins currently available to monitor many different kinds of devices and services, including:

· HTTP, POP3, IMAP, FTP, SSH, DHCP

· CPU Load, Disk Usage, Memory Usage, Current Users

· Unix/Linux, Windows, and Netware Servers

· Routers and Switches

· etc.

Obtaining Plugins

Plugins are not distributed with Nagios, but you can download the official Nagios plugins and many additional plugins created and maintained by Nagios users from the following locations:

· Nagios Plugins Project: http://nagiosplug.sourceforge.net/
· Nagios Downloads Page: http://www.nagios.org/download/
· NagiosExchange.org: http://www.nagiosexchange.org/
How Do I Use Plugin X?

Most all plugins will display basic usage information when you execute them using '-h' or '--help' on the command line. For example, if you want to know how the check_http plugin works or what options it accepts, you should try executing the following command:

./check_http --help

Plugin API

You can find information on the technical aspects of plugins, as well as how to go about creating your own custom plugins here.

