
Monitoring Views Reporting

 Services | Hosts | Event Logs

 By Status

 Unhandled Problems
 Service Problems
 All Services

 By Host

 Details
 Summary

 By Host Group

 Details
 Summary

 By Service Group

 Details
 - Problems
 - Acknowledged
 - Not Acknowledged

 Summary

 Meta Services

 Meta Services

 Nagios

 Scheduling Queue
 Downtime
 Comments

Monitoring Services Details

Object Definitions

Up To: Contents

 See Also: Object Configuration Overview, Object Tricks, Object Inheritance, Custom Object Variables

Introduction

One of the features of Nagios' object configuration format is that you can create object definitions that inherit properties from other object definitions. An explanation of how object inheritence works
can be found here. I strongly suggest that you familiarize yourself with object inheritence once you read over the documentation presented below, as it will make the job of creating and maintaining
object definitions much easier than it otherwise would be. Also, read up on the object tricks that offer shortcuts for otherwise tedious configuration tasks.

When creating and/or editing configuration files, keep the following in mind:

Lines that start with a '#' character are taken to be comments and are not processed1.
Directive names are case-sensitive2.

Retention Notes

It is important to point out that several directives in host, service, and contact definitions may not be picked up by Nagios when you change them in your configuration files. Object directives that can
exhibit this behavior are marked with an asterisk (*). The reason for this behavior is due to the fact that Nagios chooses to honor values stored in the state retention file over values found in the config
files, assuming you have state retention enabled on a program-wide basis and the value of the directive is changed during runtime with an external command.

One way to get around this problem is to disable the retention of non-status information using the retain_nonstatus_information directive in the host, service, and contact definitions. Disabling this
directive will cause Nagios to take the initial values for these directives from your config files, rather than from the state retention file when it (re)starts.

Sample Configuration Files

 Note: Sample object configuration files are installed in the /usr/local/nagios/etc/ directory when you follow the quickstart installation guide.

Object Types

Host definitions
Host group definitions
Service definitions
Service group definitions
Contact definitions
Contact group definitions
Time period definitions
Command definitions
Service dependency definitions
Service escalation definitions
Host dependency definitions
Host escalation definitions
Extended host information definitions
Extended service information definitions

Host Definition
Description:

A host definition is used to define a physical server, workstation, device, etc. that resides on your network.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define host{
host_name host_name
alias alias
display_name display_name
address address
parents host_names
hostgroups hostgroup_names
check_command command_name
initial_state [o,d,u]
max_check_attempts #
check_interval #
retry_interval #
active_checks_enabled [0/1]
passive_checks_enabled [0/1]
check_period timeperiod_name
obsess_over_host [0/1]
check_freshness [0/1]
freshness_threshold #
event_handler command_name
event_handler_enabled [0/1]
low_flap_threshold #
high_flap_threshold #
flap_detection_enabled [0/1]
flap_detection_options [o,d,u]
process_perf_data [0/1]
retain_status_information [0/1]
retain_nonstatus_information[0/1]
contacts contacts
contact_groups contact_groups
notification_interval #
first_notification_delay #
notification_period timeperiod_name
notification_options [d,u,r,f,s]
notifications_enabled [0/1]
stalking_options [o,d,u]
notes note_string
notes_url url
action_url url
icon_image image_file
icon_image_alt alt_string
vrml_image image_file
statusmap_image image_file
2d_coords x_coord,y_coord
3d_coords x_coord,y_coord,z_coord

 }
Example Definition:
define host{

Poller States

Hosts Up Down Unreachable Pending

208 207 1 0 0

Services Ok Warning Critical Unknown Pending

3652 3363 12/23 62/186 70/80 0

 Documentation - You are service.desk Logout

2013/05/11 22:22

Centreon - IT & Network Monitoring http://10.0.51.71/centreon/main.php?p=20212&doc=1&page=objectdefi...

1 of 9 11/05/2013 22:24

host_name bogus-router
alias Bogus Router #1
address 192.168.1.254
parents server-backbone
check_command check-host-alive
check_interval 5
retry_interval 1
max_check_attempts 5
check_period 24x7
process_perf_data 0
retain_nonstatus_information 0
contact_groups router-admins
notification_interval 30
notification_period 24x7
notification_options d,u,r
}

Directive Descriptions:
host_name: This directive is used to define a short name used to identify the host. It is used in host group and service definitions to reference this particular host. Hosts can have

multiple services (which are monitored) associated with them. When used properly, the $HOSTNAME$ macro will contain this short name.
alias: This directive is used to define a longer name or description used to identify the host. It is provided in order to allow you to more easily identify a particular host. When

used properly, the $HOSTALIAS$ macro will contain this alias/description.
address: This directive is used to define the address of the host. Normally, this is an IP address, although it could really be anything you want (so long as it can be used to

check the status of the host). You can use a FQDN to identify the host instead of an IP address, but if DNS services are not availble this could cause problems. When
used properly, the $HOSTADDRESS$ macro will contain this address. Note: If you do not specify an address directive in a host definition, the name of the host will be
used as its address. A word of caution about doing this, however - if DNS fails, most of your service checks will fail because the plugins will be unable to resolve the
host name.

display_name: This directive is used to define an alternate name that should be displayed in the web interface for this host. If not specified, this defaults to the value you specify for
the host_name directive. Note: The current CGIs do not use this option, although future versions of the web interface will.

parents: This directive is used to define a comma-delimited list of short names of the "parent" hosts for this particular host. Parent hosts are typically routers, switches, firewalls,
etc. that lie between the monitoring host and a remote hosts. A router, switch, etc. which is closest to the remote host is considered to be that host's "parent". Read the
"Determining Status and Reachability of Network Hosts" document located here for more information. If this host is on the same network segment as the host doing the
monitoring (without any intermediate routers, etc.) the host is considered to be on the local network and will not have a parent host. Leave this value blank if the host
does not have a parent host (i.e. it is on the same segment as the Nagios host). The order in which you specify parent hosts has no effect on how things are
monitored.

hostgroups: This directive is used to identify the short name(s) of the hostgroup(s) that the host belongs to. Multiple hostgroups should be separated by commas. This directive may
be used as an alternative to (or in addition to) using the members directive in hostgroup definitions.

check_command: This directive is used to specify the short name of the command that should be used to check if the host is up or down. Typically, this command would try and ping the
host to see if it is "alive". The command must return a status of OK (0) or Nagios will assume the host is down. If you leave this argument blank, the host will not be
actively checked. Thus, Nagios will likely always assume the host is up (it may show up as being in a "PENDING" state in the web interface). This is useful if you are
monitoring printers or other devices that are frequently turned off. The maximum amount of time that the notification command can run is controlled by the
host_check_timeout option.

initial_state: By default Nagios will assume that all hosts are in UP states when in starts. You can override the initial state for a host by using this directive. Valid options are: o = UP,
d = DOWN, and u = UNREACHABLE.

max_check_attempts: This directive is used to define the number of times that Nagios will retry the host check command if it returns any state other than an OK state. Setting this value to 1
will cause Nagios to generate an alert without retrying the host check again. Note: If you do not want to check the status of the host, you must still set this to a minimum
value of 1. To bypass the host check, just leave the check_command option blank.

check_interval: This directive is used to define the number of "time units" between regularly scheduled checks of the host. Unless you've changed the interval_length directive from the
default value of 60, this number will mean minutes. More information on this value can be found in the check scheduling documentation.

retry_interval: This directive is used to define the number of "time units" to wait before scheduling a re-check of the hosts. Hosts are rescheduled at the retry interval when they have
changed to a non-UP state. Once the host has been retried max_check_attempts times without a change in its status, it will revert to being scheduled at its "normal"
rate as defined by the check_interval value. Unless you've changed the interval_length directive from the default value of 60, this number will mean minutes. More
information on this value can be found in the check scheduling documentation.

active_checks_enabled *: This directive is used to determine whether or not active checks (either regularly scheduled or on-demand) of this host are enabled. Values: 0 = disable active host
checks, 1 = enable active host checks.

passive_checks_enabled *: This directive is used to determine whether or not passive checks are enabled for this host. Values: 0 = disable passive host checks, 1 = enable passive host checks.
check_period: This directive is used to specify the short name of the time period during which active checks of this host can be made.
obsess_over_host *: This directive determines whether or not checks for the host will be "obsessed" over using the ochp_command.
check_freshness *: This directive is used to determine whether or not freshness checks are enabled for this host. Values: 0 = disable freshness checks, 1 = enable freshness checks.
freshness_threshold: This directive is used to specify the freshness threshold (in seconds) for this host. If you set this directive to a value of 0, Nagios will determine a freshness threshold to

use automatically.
event_handler: This directive is used to specify the short name of the command that should be run whenever a change in the state of the host is detected (i.e. whenever it goes down

or recovers). Read the documentation on event handlers for a more detailed explanation of how to write scripts for handling events. The maximum amount of time that
the event handler command can run is controlled by the event_handler_timeout option.

event_handler_enabled *: This directive is used to determine whether or not the event handler for this host is enabled. Values: 0 = disable host event handler, 1 = enable host event handler.
low_flap_threshold: This directive is used to specify the low state change threshold used in flap detection for this host. More information on flap detection can be found here. If you set this

directive to a value of 0, the program-wide value specified by the low_host_flap_threshold directive will be used.
high_flap_threshold: This directive is used to specify the high state change threshold used in flap detection for this host. More information on flap detection can be found here. If you set

this directive to a value of 0, the program-wide value specified by the high_host_flap_threshold directive will be used.
flap_detection_enabled *: This directive is used to determine whether or not flap detection is enabled for this host. More information on flap detection can be found here. Values: 0 = disable host

flap detection, 1 = enable host flap detection.
flap_detection_options: This directive is used to determine what host states the flap detection logic will use for this host. Valid options are a combination of one or more of the following: o = UP

states, d = DOWN states, u = UNREACHABLE states.
process_perf_data *: This directive is used to determine whether or not the processing of performance data is enabled for this host. Values: 0 = disable performance data processing, 1 =

enable performance data processing.
retain_status_information: This directive is used to determine whether or not status-related information about the host is retained across program restarts. This is only useful if you have enabled

state retention using the retain_state_information directive. Value: 0 = disable status information retention, 1 = enable status information retention.
retain_nonstatus_information:This directive is used to determine whether or not non-status information about the host is retained across program restarts. This is only useful if you have enabled

state retention using the retain_state_information directive. Value: 0 = disable non-status information retention, 1 = enable non-status information retention.
contacts: This is a list of the short names of the contacts that should be notified whenever there are problems (or recoveries) with this host. Multiple contacts should be

separated by commas. Useful if you want notifications to go to just a few people and don't want to configure contact groups. You must specify at least one contact or
contact group in each host definition.

contact_groups: This is a list of the short names of the contact groups that should be notified whenever there are problems (or recoveries) with this host. Multiple contact groups should
be separated by commas. You must specify at least one contact or contact group in each host definition.

notification_interval: This directive is used to define the number of "time units" to wait before re-notifying a contact that this service is still down or unreachable. Unless you've changed the
interval_length directive from the default value of 60, this number will mean minutes. If you set this value to 0, Nagios will not re-notify contacts about problems for this
host - only one problem notification will be sent out.

first_notification_delay: This directive is used to define the number of "time units" to wait before sending out the first problem notification when this host enters a non-UP state. Unless you've
changed the interval_length directive from the default value of 60, this number will mean minutes. If you set this value to 0, Nagios will start sending out notifications
immediately.

notification_period: This directive is used to specify the short name of the time period during which notifications of events for this host can be sent out to contacts. If a host goes down,
becomes unreachable, or recoveries during a time which is not covered by the time period, no notifications will be sent out.

notification_options: This directive is used to determine when notifications for the host should be sent out. Valid options are a combination of one or more of the following: d = send
notifications on a DOWN state, u = send notifications on an UNREACHABLE state, r = send notifications on recoveries (OK state), f = send notifications when the host
starts and stops flapping, and s = send notifications when scheduled downtime starts and ends. If you specify n (none) as an option, no host notifications will be sent
out. If you do not specify any notification options, Nagios will assume that you want notifications to be sent out for all possible states. Example: If you specify d,r in this
field, notifications will only be sent out when the host goes DOWN and when it recovers from a DOWN state.

notifications_enabled *: This directive is used to determine whether or not notifications for this host are enabled. Values: 0 = disable host notifications, 1 = enable host notifications.
stalking_options: This directive determines which host states "stalking" is enabled for. Valid options are a combination of one or more of the following: o = stalk on UP states, d = stalk on

DOWN states, and u = stalk on UNREACHABLE states. More information on state stalking can be found here.
notes: This directive is used to define an optional string of notes pertaining to the host. If you specify a note here, you will see the it in the extended information CGI (when

you are viewing information about the specified host).
notes_url: This variable is used to define an optional URL that can be used to provide more information about the host. If you specify an URL, you will see a red folder icon in the

CGIs (when you are viewing host information) that links to the URL you specify here. Any valid URL can be used. If you plan on using relative paths, the base path will
the the same as what is used to access the CGIs (i.e. /cgi-bin/nagios/). This can be very useful if you want to make detailed information on the host, emergency
contact methods, etc. available to other support staff.

action_url: This directive is used to define an optional URL that can be used to provide more actions to be performed on the host. If you specify an URL, you will see a red "splat"
icon in the CGIs (when you are viewing host information) that links to the URL you specify here. Any valid URL can be used. If you plan on using relative paths, the
base path will the the same as what is used to access the CGIs (i.e. /cgi-bin/nagios/).

icon_image: This variable is used to define the name of a GIF, PNG, or JPG image that should be associated with this host. This image will be displayed in the various places in the
CGIs. The image will look best if it is 40x40 pixels in size. Images for hosts are assumed to be in the logos/ subdirectory in your HTML images directory (i.e. /usr/local
/nagios/share/images/logos).

icon_image_alt: This variable is used to define an optional string that is used in the ALT tag of the image specified by the <icon_image> argument.
vrml_image: This variable is used to define the name of a GIF, PNG, or JPG image that should be associated with this host. This image will be used as the texture map for the

specified host in the statuswrl CGI. Unlike the image you use for the <icon_image> variable, this one should probably not have any transparency. If it does, the host
object will look a bit wierd. Images for hosts are assumed to be in the logos/ subdirectory in your HTML images directory (i.e. /usr/local/nagios/share/images/logos).

statusmap_image: This variable is used to define the name of an image that should be associated with this host in the statusmap CGI. You can specify a JPEG, PNG, and GIF image if
you want, although I would strongly suggest using a GD2 format image, as other image formats will result in a lot of wasted CPU time when the statusmap image is
generated. GD2 images can be created from PNG images by using the pngtogd2 utility supplied with Thomas Boutell's gd library. The GD2 images should be created
in uncompressed format in order to minimize CPU load when the statusmap CGI is generating the network map image. The image will look best if it is 40x40 pixels in
size. You can leave these option blank if you are not using the statusmap CGI. Images for hosts are assumed to be in the logos/ subdirectory in your HTML images
directory (i.e. /usr/local/nagios/share/images/logos).

Centreon - IT & Network Monitoring http://10.0.51.71/centreon/main.php?p=20212&doc=1&page=objectdefi...

2 of 9 11/05/2013 22:24

2d_coords: This variable is used to define coordinates to use when drawing the host in the statusmap CGI. Coordinates should be given in positive integers, as they correspond to
physical pixels in the generated image. The origin for drawing (0,0) is in the upper left hand corner of the image and extends in the positive x direction (to the right)
along the top of the image and in the positive y direction (down) along the left hand side of the image. For reference, the size of the icons drawn is usually about 40x40
pixels (text takes a little extra space). The coordinates you specify here are for the upper left hand corner of the host icon that is drawn. Note: Don't worry about what
the maximum x and y coordinates that you can use are. The CGI will automatically calculate the maximum dimensions of the image it creates based on the largest x and
y coordinates you specify.

3d_coords: This variable is used to define coordinates to use when drawing the host in the statuswrl CGI. Coordinates can be positive or negative real numbers. The origin for
drawing is (0.0,0.0,0.0). For reference, the size of the host cubes drawn is 0.5 units on each side (text takes a little more space). The coordinates you specify here
are used as the center of the host cube.

Host Group Definition
Description:

A host group definition is used to group one or more hosts together for simplifying configuration with object tricks or display purposes in the CGIs.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define hostgroup{
hostgroup_name hostgroup_name
alias alias
members hosts
hostgroup_membershostgroups
notes note_string
notes_url url
action_url url

 }
Example Definition:
define hostgroup{

hostgroup_name novell-servers
alias Novell Servers
members netware1,netware2,netware3,netware4
}

Directive Descriptions:
hostgroup_name: This directive is used to define a short name used to identify the host group.
alias: This directive is used to define is a longer name or description used to identify the host group. It is provided in order to allow you to more easily identify a particular host group.
members: This is a list of the short names of hosts that should be included in this group. Multiple host names should be separated by commas. This directive may be used as an alternative

to (or in addition to) the hostgroups directive in host definitions.
hostgroup_members:This optional directive can be used to include hosts from other "sub" host groups in this host group. Specify a comma-delimited list of short names of other host groups whose

members should be included in this group.
notes: This directive is used to define an optional string of notes pertaining to the host. If you specify a note here, you will see the it in the extended information CGI (when you are

viewing information about the specified host).
notes_url: This variable is used to define an optional URL that can be used to provide more information about the host group. If you specify an URL, you will see a red folder icon in the

CGIs (when you are viewing hostgroup information) that links to the URL you specify here. Any valid URL can be used. If you plan on using relative paths, the base path will the
the same as what is used to access the CGIs (i.e. /cgi-bin/nagios/). This can be very useful if you want to make detailed information on the host group, emergency contact
methods, etc. available to other support staff.

action_url: This directive is used to define an optional URL that can be used to provide more actions to be performed on the host group. If you specify an URL, you will see a red "splat"
icon in the CGIs (when you are viewing hostgroup information) that links to the URL you specify here. Any valid URL can be used. If you plan on using relative paths, the base
path will the the same as what is used to access the CGIs (i.e. /cgi-bin/nagios/).

Service Definition
Description:

A service definition is used to identify a "service" that runs on a host. The term "service" is used very loosely. It can mean an actual service that runs on the host (POP, SMTP, HTTP, etc.) or some
other type of metric associated with the host (response to a ping, number of logged in users, free disk space, etc.). The different arguments to a service definition are outlined below.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define service{
host_name host_name
hostgroup_name hostgroup_name
service_description service_description
display_name display_name
servicegroups servicegroup_names
is_volatile [0/1]
check_command command_name
initial_state [o,w,u,c]
max_check_attempts #
check_interval #
retry_interval #
active_checks_enabled [0/1]
passive_checks_enabled [0/1]
check_period timeperiod_name
obsess_over_service [0/1]
check_freshness [0/1]
freshness_threshold #
event_handler command_name
event_handler_enabled [0/1]
low_flap_threshold #
high_flap_threshold #
flap_detection_enabled [0/1]
flap_detection_options [o,w,c,u]
process_perf_data [0/1]
retain_status_information [0/1]
retain_nonstatus_information[0/1]
notification_interval #
first_notification_delay #
notification_period timeperiod_name
notification_options [w,u,c,r,f,s]
notifications_enabled [0/1]
contacts contacts
contact_groups contact_groups
stalking_options [o,w,u,c]
notes note_string
notes_url url
action_url url
icon_image image_file
icon_image_alt alt_string

 }
Example Definition:
define service{

host_name linux-server
service_description check-disk-sda1
check_command check-disk!/dev/sda1
max_check_attempts 5
check_interval 5
retry_interval 3
check_period 24x7
notification_interval 30
notification_period 24x7
notification_options w,c,r
contact_groups linux-admins
}

Directive Descriptions:
host_name: This directive is used to specify the short name(s) of the host(s) that the service "runs" on or is associated with. Multiple hosts should be separated by commas.
hostgroup_name: This directive is used to specify the short name(s) of the hostgroup(s) that the service "runs" on or is associated with. Multiple hostgroups should be separated by

commas. The hostgroup_name may be used instead of, or in addition to, the host_name directive.

Centreon - IT & Network Monitoring http://10.0.51.71/centreon/main.php?p=20212&doc=1&page=objectdefi...

3 of 9 11/05/2013 22:24

service_description;: This directive is used to define the description of the service, which may contain spaces, dashes, and colons (semicolons, apostrophes, and quotation marks should be
avoided). No two services associated with the same host can have the same description. Services are uniquely identified with their host_name and service_description
directives.

display_name: This directive is used to define an alternate name that should be displayed in the web interface for this service. If not specified, this defaults to the value you specify for
the service_description directive. Note: The current CGIs do not use this option, although future versions of the web interface will.

servicegroups: This directive is used to identify the short name(s) of the servicegroup(s) that the service belongs to. Multiple servicegroups should be separated by commas. This
directive may be used as an alternative to using the members directive in servicegroup definitions.

is_volatile: This directive is used to denote whether the service is "volatile". Services are normally not volatile. More information on volatile service and how they differ from normal
services can be found here. Value: 0 = service is not volatile, 1 = service is volatile.

check_command: This directive is used to specify the short name of the command that Nagios will run in order to check the status of the service. The maximum amount of time that
the service check command can run is controlled by the service_check_timeout option.

initial_state: By default Nagios will assume that all services are in OK states when in starts. You can override the initial state for a service by using this directive. Valid options are: o
= OK, w = WARNING, u = UNKNOWN, and c = CRITICAL.

max_check_attempts: This directive is used to define the number of times that Nagios will retry the service check command if it returns any state other than an OK state. Setting this value to
1 will cause Nagios to generate an alert without retrying the service check again.

check_interval: This directive is used to define the number of "time units" to wait before scheduling the next "regular" check of the service. "Regular" checks are those that occur when
the service is in an OK state or when the service is in a non-OK state, but has already been rechecked max_check_attempts number of times. Unless you've
changed the interval_length directive from the default value of 60, this number will mean minutes. More information on this value can be found in the check scheduling
documentation.

retry_interval: This directive is used to define the number of "time units" to wait before scheduling a re-check of the service. Services are rescheduled at the retry interval when they
have changed to a non-OK state. Once the service has been retried max_check_attempts times without a change in its status, it will revert to being scheduled at its
"normal" rate as defined by the check_interval value. Unless you've changed the interval_length directive from the default value of 60, this number will mean minutes.
More information on this value can be found in the check scheduling documentation.

active_checks_enabled *: This directive is used to determine whether or not active checks of this service are enabled. Values: 0 = disable active service checks, 1 = enable active service
checks.

passive_checks_enabled *: This directive is used to determine whether or not passive checks of this service are enabled. Values: 0 = disable passive service checks, 1 = enable passive service
checks.

check_period: This directive is used to specify the short name of the time period during which active checks of this service can be made.
obsess_over_service *: This directive determines whether or not checks for the service will be "obsessed" over using the ocsp_command.
check_freshness *: This directive is used to determine whether or not freshness checks are enabled for this service. Values: 0 = disable freshness checks, 1 = enable freshness checks.
freshness_threshold: This directive is used to specify the freshness threshold (in seconds) for this service. If you set this directive to a value of 0, Nagios will determine a freshness

threshold to use automatically.
event_handler: This directive is used to specify the short name of the command that should be run whenever a change in the state of the service is detected (i.e. whenever it goes

down or recovers). Read the documentation on event handlers for a more detailed explanation of how to write scripts for handling events. The maximum amount of time
that the event handler command can run is controlled by the event_handler_timeout option.

event_handler_enabled *: This directive is used to determine whether or not the event handler for this service is enabled. Values: 0 = disable service event handler, 1 = enable service event
handler.

low_flap_threshold: This directive is used to specify the low state change threshold used in flap detection for this service. More information on flap detection can be found here. If you set
this directive to a value of 0, the program-wide value specified by the low_service_flap_threshold directive will be used.

high_flap_threshold: This directive is used to specify the high state change threshold used in flap detection for this service. More information on flap detection can be found here. If you set
this directive to a value of 0, the program-wide value specified by the high_service_flap_threshold directive will be used.

flap_detection_enabled *: This directive is used to determine whether or not flap detection is enabled for this service. More information on flap detection can be found here. Values: 0 = disable
service flap detection, 1 = enable service flap detection.

flap_detection_options: This directive is used to determine what service states the flap detection logic will use for this service. Valid options are a combination of one or more of the following: o
= OK states, w = WARNING states, c = CRITICAL states, u = UNKNOWN states.

process_perf_data *: This directive is used to determine whether or not the processing of performance data is enabled for this service. Values: 0 = disable performance data processing, 1
= enable performance data processing.

retain_status_information: This directive is used to determine whether or not status-related information about the service is retained across program restarts. This is only useful if you have
enabled state retention using the retain_state_information directive. Value: 0 = disable status information retention, 1 = enable status information retention.

retain_nonstatus_information:This directive is used to determine whether or not non-status information about the service is retained across program restarts. This is only useful if you have enabled
state retention using the retain_state_information directive. Value: 0 = disable non-status information retention, 1 = enable non-status information retention.

notification_interval: This directive is used to define the number of "time units" to wait before re-notifying a contact that this service is still in a non-OK state. Unless you've changed the
interval_length directive from the default value of 60, this number will mean minutes. If you set this value to 0, Nagios will not re-notify contacts about problems for this
service - only one problem notification will be sent out.

first_notification_delay: This directive is used to define the number of "time units" to wait before sending out the first problem notification when this service enters a non-OK state. Unless
you've changed the interval_length directive from the default value of 60, this number will mean minutes. If you set this value to 0, Nagios will start sending out
notifications immediately.

notification_period: This directive is used to specify the short name of the time period during which notifications of events for this service can be sent out to contacts. No service
notifications will be sent out during times which is not covered by the time period.

notification_options: This directive is used to determine when notifications for the service should be sent out. Valid options are a combination of one or more of the following: w = send
notifications on a WARNING state, u = send notifications on an UNKNOWN state, c = send notifications on a CRITICAL state, r = send notifications on recoveries (OK
state), f = send notifications when the service starts and stops flapping, and s = send notifications when scheduled downtime starts and ends. If you specify n (none)
as an option, no service notifications will be sent out. If you do not specify any notification options, Nagios will assume that you want notifications to be sent out for all
possible states. Example: If you specify w,r in this field, notifications will only be sent out when the service goes into a WARNING state and when it recovers from a
WARNING state.

notifications_enabled *: This directive is used to determine whether or not notifications for this service are enabled. Values: 0 = disable service notifications, 1 = enable service notifications.
contacts: This is a list of the short names of the contacts that should be notified whenever there are problems (or recoveries) with this service. Multiple contacts should be

separated by commas. Useful if you want notifications to go to just a few people and don't want to configure contact groups. You must specify at least one contact or
contact group in each service definition.

contact_groups: This is a list of the short names of the contact groups that should be notified whenever there are problems (or recoveries) with this service. Multiple contact groups
should be separated by commas. You must specify at least one contact or contact group in each service definition.

stalking_options: This directive determines which service states "stalking" is enabled for. Valid options are a combination of one or more of the following: o = stalk on OK states, w =
stalk on WARNING states, u = stalk on UNKNOWN states, and c = stalk on CRITICAL states. More information on state stalking can be found here.

notes: This directive is used to define an optional string of notes pertaining to the service. If you specify a note here, you will see the it in the extended information CGI (when
you are viewing information about the specified service).

notes_url: This directive is used to define an optional URL that can be used to provide more information about the service. If you specify an URL, you will see a red folder icon in
the CGIs (when you are viewing service information) that links to the URL you specify here. Any valid URL can be used. If you plan on using relative paths, the base
path will the the same as what is used to access the CGIs (i.e. /cgi-bin/nagios/). This can be very useful if you want to make detailed information on the service,
emergency contact methods, etc. available to other support staff.

action_url: This directive is used to define an optional URL that can be used to provide more actions to be performed on the service. If you specify an URL, you will see a red
"splat" icon in the CGIs (when you are viewing service information) that links to the URL you specify here. Any valid URL can be used. If you plan on using relative
paths, the base path will the the same as what is used to access the CGIs (i.e. /cgi-bin/nagios/).

icon_image: This variable is used to define the name of a GIF, PNG, or JPG image that should be associated with this service. This image will be displayed in the status and
extended information CGIs. The image will look best if it is 40x40 pixels in size. Images for services are assumed to be in the logos/ subdirectory in your HTML images
directory (i.e. /usr/local/nagios/share/images/logos).

icon_image_alt: This variable is used to define an optional string that is used in the ALT tag of the image specified by the <icon_image> argument. The ALT tag is used in the status,
extended information and statusmap CGIs.

Service Group Definition
Description:

A service group definition is used to group one or more services together for simplifying configuration with object tricks or display purposes in the CGIs.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define servicegroup{
servicegroup_name servicegroup_name
alias alias
members services
servicegroup_membersservicegroups
notes note_string
notes_url url
action_url url

 }
Example Definition:
define servicegroup{

servicegroup_name dbservices
alias Database Services
members ms1,SQL Server,ms1,SQL Server Agent,ms1,SQL DTC
}

Directive Descriptions:
servicegroup_name: This directive is used to define a short name used to identify the service group.
alias: This directive is used to define is a longer name or description used to identify the service group. It is provided in order to allow you to more easily identify a particular

service group.
members: This is a list of the descriptions of services (and the names of their corresponding hosts) that should be included in this group. Host and service names should be

separated by commas. This directive may be used as an alternative to the servicegroups directive in service definitions. The format of the member directive is as
follows (note that a host name must precede a service name/description):

Centreon - IT & Network Monitoring http://10.0.51.71/centreon/main.php?p=20212&doc=1&page=objectdefi...

4 of 9 11/05/2013 22:24

members=<host1>,<service1>,<host2>,<service2>,...,<hostn>,<servicen>

servicegroup_members:This optional directive can be used to include services from other "sub" service groups in this service group. Specify a comma-delimited list of short names of other service
groups whose members should be included in this group.

notes: This directive is used to define an optional string of notes pertaining to the service group. If you specify a note here, you will see the it in the extended information CGI (when
you are viewing information about the specified service group).

notes_url: This directive is used to define an optional URL that can be used to provide more information about the service group. If you specify an URL, you will see a red folder icon in
the CGIs (when you are viewing service group information) that links to the URL you specify here. Any valid URL can be used. If you plan on using relative paths, the base
path will the the same as what is used to access the CGIs (i.e. /cgi-bin/nagios/). This can be very useful if you want to make detailed information on the service group,
emergency contact methods, etc. available to other support staff.

action_url: This directive is used to define an optional URL that can be used to provide more actions to be performed on the service group. If you specify an URL, you will see a red
"splat" icon in the CGIs (when you are viewing service group information) that links to the URL you specify here. Any valid URL can be used. If you plan on using relative
paths, the base path will the the same as what is used to access the CGIs (i.e. /cgi-bin/nagios/).

Contact Definition
Description:

A contact definition is used to identify someone who should be contacted in the event of a problem on your network. The different arguments to a contact definition are described below.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define contact{
contact_name contact_name
alias alias
contactgroups contactgroup_names
host_notifications_enabled [0/1]
service_notifications_enabled [0/1]
host_notification_period timeperiod_name
service_notification_period timeperiod_name
host_notification_options [d,u,r,f,s,n]
service_notification_options [w,u,c,r,f,s,n]
host_notification_commands command_name
service_notification_commandscommand_name
email email_address
pager pager_number or pager_email_gateway
addressx additional_contact_address
can_submit_commands [0/1]
retain_status_information [0/1]
retain_nonstatus_information [0/1]

 }
Example Definition:
define contact{

contact_name jdoe
alias John Doe
host_notifications_enabled 1
service_notifications_enabled 1
service_notification_period 24x7
host_notification_period 24x7
service_notification_options w,u,c,r
host_notification_options d,u,r
service_notification_commands notify-by-email
host_notification_commands host-notify-by-email
email jdoe@localhost.localdomain
pager 555-5555@pagergateway.localhost.localdomain
address1 xxxxx.xyyy@icq.com
address2 555-555-5555
can_submit_commands 1
}

Directive Descriptions:
contact_name: This directive is used to define a short name used to identify the contact. It is referenced in contact group definitions. Under the right circumstances, the

$CONTACTNAME$ macro will contain this value.
alias: This directive is used to define a longer name or description for the contact. Under the rights circumstances, the $CONTACTALIAS$ macro will contain this value. If

not specified, the contact_name will be used as the alias.
contactgroups: This directive is used to identify the short name(s) of the contactgroup(s) that the contact belongs to. Multiple contactgroups should be separated by commas. This

directive may be used as an alternative to (or in addition to) using the members directive in contactgroup definitions.
host_notifications_enabled: This directive is used to determine whether or not the contact will receive notifications about host problems and recoveries. Values: 0 = don't send notifications, 1 =

send notifications.
service_notifications_enabled: This directive is used to determine whether or not the contact will receive notifications about service problems and recoveries. Values: 0 = don't send notifications, 1

= send notifications.
host_notification_period: This directive is used to specify the short name of the time period during which the contact can be notified about host problems or recoveries. You can think of this

as an "on call" time for host notifications for the contact. Read the documentation on time periods for more information on how this works and potential problems that
may result from improper use.

service_notification_period: This directive is used to specify the short name of the time period during which the contact can be notified about service problems or recoveries. You can think of
this as an "on call" time for service notifications for the contact. Read the documentation on time periods for more information on how this works and potential
problems that may result from improper use.

host_notification_commands: This directive is used to define a list of the short names of the commands used to notify the contact of a host problem or recovery. Multiple notification commands
should be separated by commas. All notification commands are executed when the contact needs to be notified. The maximum amount of time that a notification
command can run is controlled by the notification_timeout option.

host_notification_options: This directive is used to define the host states for which notifications can be sent out to this contact. Valid options are a combination of one or more of the following:
d = notify on DOWN host states, u = notify on UNREACHABLE host states, r = notify on host recoveries (UP states), f = notify when the host starts and stops
flapping, and s = send notifications when host or service scheduled downtime starts and ends. If you specify n (none) as an option, the contact will not receive any
type of host notifications.

service_notification_options: This directive is used to define the service states for which notifications can be sent out to this contact. Valid options are a combination of one or more of the
following: w = notify on WARNING service states, u = notify on UNKNOWN service states, c = notify on CRITICAL service states, r = notify on service recoveries
(OK states), and f = notify when the service starts and stops flapping. If you specify n (none) as an option, the contact will not receive any type of service
notifications.

service_notification_commands:This directive is used to define a list of the short names of the commands used to notify the contact of a service problem or recovery. Multiple notification commands
should be separated by commas. All notification commands are executed when the contact needs to be notified. The maximum amount of time that a notification
command can run is controlled by the notification_timeout option.

email: This directive is used to define an email address for the contact. Depending on how you configure your notification commands, it can be used to send out an alert
email to the contact. Under the right circumstances, the $CONTACTEMAIL$ macro will contain this value.

pager: This directive is used to define a pager number for the contact. It can also be an email address to a pager gateway (i.e. pagejoe@pagenet.com). Depending on how
you configure your notification commands, it can be used to send out an alert page to the contact. Under the right circumstances, the $CONTACTPAGER$ macro
will contain this value.

addressx: Address directives are used to define additional "addresses" for the contact. These addresses can be anything - cell phone numbers, instant messaging addresses,
etc. Depending on how you configure your notification commands, they can be used to send out an alert o the contact. Up to six addresses can be defined using
these directives (address1 through address6). The $CONTACTADDRESSx$ macro will contain this value.

can_submit_commands: This directive is used to determine whether or not the contact can submit external commands to Nagios from the CGIs. Values: 0 = don't allow contact to submit
commands, 1 = allow contact to submit commands.

retain_status_information: This directive is used to determine whether or not status-related information about the contact is retained across program restarts. This is only useful if you have
enabled state retention using the retain_state_information directive. Value: 0 = disable status information retention, 1 = enable status information retention.

retain_nonstatus_information: This directive is used to determine whether or not non-status information about the contact is retained across program restarts. This is only useful if you have
enabled state retention using the retain_state_information directive. Value: 0 = disable non-status information retention, 1 = enable non-status information retention.

Contact Group Definition
Description:

A contact group definition is used to group one or more contacts together for the purpose of sending out alert/recovery notifications.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define contactgroup{
contactgroup_name contactgroup_name
alias alias
members contacts
contactgroup_memberscontactgroups

 }
Example Definition:
define contactgroup{

Centreon - IT & Network Monitoring http://10.0.51.71/centreon/main.php?p=20212&doc=1&page=objectdefi...

5 of 9 11/05/2013 22:24

contactgroup_name novell-admins
alias Novell Administrators
members jdoe,rtobert,tzach
}

Directive Descriptions:
contactgroup_name: This directive is a short name used to identify the contact group.
alias: This directive is used to define a longer name or description used to identify the contact group.
members: This directive is used to define a list of the short names of contacts that should be included in this group. Multiple contact names should be separated by commas. This

directive may be used as an alternative to (or in addition to) using the contactgroups directive in contact definitions.
contactgroup_members:This optional directive can be used to include contacts from other "sub" contact groups in this contact group. Specify a comma-delimited list of short names of other contact

groups whose members should be included in this group.

Time Period Definition
Description:

A time period is a list of times during various days that are considered to be "valid" times for notifications and service checks. It consists of time ranges for each day of the week that "rotate" once
the week has come to an end. Different types of exceptions to the normal weekly time are supported, including: specific weekdays, days of generic months, days of specific months, and calendar
dates.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define timeperiod{
timeperiod_nametimeperiod_name
alias alias
[weekday] timeranges
[exception] timeranges
exclude [timeperiod1,timeperiod2,...,timeperiodn]

 }
Example Definitions:
define timeperiod{

timeperiod_name nonworkhours
alias Non-Work Hours
sunday 00:00-24:00 ; Every Sunday of every week
monday 00:00-09:00,17:00-24:00 ; Every Monday of every week
tuesday 00:00-09:00,17:00-24:00 ; Every Tuesday of every week
wednesday 00:00-09:00,17:00-24:00 ; Every Wednesday of every week
thursday 00:00-09:00,17:00-24:00 ; Every Thursday of every week
friday 00:00-09:00,17:00-24:00 ; Every Friday of every week
saturday 00:00-24:00 ; Every Saturday of every week
}

define timeperiod{
timeperiod_name misc-single-days
alias Misc Single Days
1999-01-28 00:00-24:00 ; January 28th, 1999
monday 3 00:00-24:00 ; 3rd Monday of every month
day 2 00:00-24:00 ; 2nd day of every month
february 10 00:00-24:00 ; February 10th of every year
february -1 00:00-24:00 ; Last day in February of every year
friday -2 00:00-24:00 ; 2nd to last Friday of every month
thursday -1 november 00:00-24:00 ; Last Thursday in November of every year
}

define timeperiod{
timeperiod_name misc-date-ranges
alias Misc Date Ranges
2007-01-01 - 2008-02-01 00:00-24:00 ; January 1st, 2007 to February 1st, 2008
monday 3 - thursday 4 00:00-24:00 ; 3rd Monday to 4th Thursday of every month
day 1 - 15 00:00-24:00 ; 1st to 15th day of every month
day 20 - -1 00:00-24:00 ; 20th to the last day of every month
july 10 - 15 00:00-24:00 ; July 10th to July 15th of every year
april 10 - may 15 00:00-24:00 ; April 10th to May 15th of every year
tuesday 1 april - friday 2 may 00:00-24:00 ; 1st Tuesday in April to 2nd Friday in May of every year
}

define timeperiod{
timeperiod_name misc-skip-ranges
alias Misc Skip Ranges
2007-01-01 - 2008-02-01 / 3 00:00-24:00 ; Every 3 days from January 1st, 2007 to February 1st, 2008
2008-04-01 / 7 00:00-24:00 ; Every 7 days from April 1st, 2008 (continuing forever)
monday 3 - thursday 4 / 2 00:00-24:00 ; Every other day from 3rd Monday to 4th Thursday of every month
day 1 - 15 / 5 00:00-24:00 ; Every 5 days from the 1st to the 15th day of every month
july 10 - 15 / 2 00:00-24:00 ; Every other day from July 10th to July 15th of every year
tuesday 1 april - friday 2 may / 6 00:00-24:00 ; Every 6 days from the 1st Tuesday in April to the 2nd Friday in May of every year
}

Directive Descriptions:
timeperiod_name:This directives is the short name used to identify the time period.
alias: This directive is a longer name or description used to identify the time period.
[weekday]: The weekday directives ("sunday" through "saturday")are comma-delimited lists of time ranges that are "valid" times for a particular day of the week. Notice that there are seven

different days for which you can define time ranges (Sunday through Saturday). Each time range is in the form of HH:MM-HH:MM, where hours are specified on a 24 hour clock.
For example, 00:15-24:00 means 12:15am in the morning for this day until 12:00am midnight (a 23 hour, 45 minute total time range). If you wish to exclude an entire day from the
timeperiod, simply do not include it in the timeperiod definition.

[exception]: You can specify several different types of exceptions to the standard rotating weekday schedule. Exceptions can take a number of different forms including single days of a
specific or generic month, single weekdays in a month, or single calendar dates. You can also specify a range of days/dates and even specify skip intervals to obtain
functionality described by "every 3 days between these dates". Rather than list all the possible formats for exception strings, I'll let you look at the example timeperiod
definitions above to see what's possible. :-) Weekdays and different types of exceptions all have different levels of precedence, so its important to understand how they can
affect each other. More information on this can be found in the documentation on timeperiods.

exclude: This directive is used to specify the short names of other timeperiod definitions whose time ranges should be excluded from this timeperiod. Multiple timeperiod names should be
separated with a comma.

Command Definition
Description:

A command definition is just that. It defines a command. Commands that can be defined include service checks, service notifications, service event handlers, host checks, host notifications, and host
event handlers. Command definitions can contain macros, but you must make sure that you include only those macros that are "valid" for the circumstances when the command will be used. More
information on what macros are available and when they are "valid" can be found here. The different arguments to a command definition are outlined below.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define command{
command_namecommand_name
command_line command_line

 }
Example Definition:
define command{

command_name check_pop
command_line /usr/local/nagios/libexec/check_pop -H $HOSTADDRESS$
}

Directive Descriptions:
command_name:This directive is the short name used to identify the command. It is referenced in contact, host, and service definitions (in notification, check, and event handler directives), among

other places.
command_line: This directive is used to define what is actually executed by Nagios when the command is used for service or host checks, notifications, or event handlers. Before the

command line is executed, all valid macros are replaced with their respective values. See the documentation on macros for determining when you can use different macros.
Note that the command line is not surrounded in quotes. Also, if you want to pass a dollar sign ($) on the command line, you have to escape it with another dollar sign.

NOTE: You may not include a semicolon (;) in the command_line directive, because everything after it will be ignored as a config file comment. You can work around this
limitation by setting one of the $USER$ macros in your resource file to a semicolon and then referencing the appropriate $USER$ macro in the command_line directive in
place of the semicolon.

Centreon - IT & Network Monitoring http://10.0.51.71/centreon/main.php?p=20212&doc=1&page=objectdefi...

6 of 9 11/05/2013 22:24

If you want to pass arguments to commands during runtime, you can use $ARGn$ macros in the command_line directive of the command definition and then separate
individual arguments from the command name (and from each other) using bang (!) characters in the object definition directive (host check command, service event handler
command, etc) that references the command. More information on how arguments in command definitions are processed during runtime can be found in the documentation on
macros.

Service Dependency Definition
Description:

Service dependencies are an advanced feature of Nagios that allow you to suppress notifications and active checks of services based on the status of one or more other services. Service
dependencies are optional and are mainly targeted at advanced users who have complicated monitoring setups. More information on how service dependencies work (read this!) can be found here.

Definition Format:

Note: Directives in red are required, while those in black are optional. However, you must supply at least one type of criteria for the definition to be of much use.

define servicedependency{
dependent_host_name host_name
dependent_hostgroup_name hostgroup_name
dependent_service_descriptionservice_description
host_name host_name
hostgroup_name hostgroup_name
service_description service_description
inherits_parent [0/1]
execution_failure_criteria [o,w,u,c,p,n]
notification_failure_criteria [o,w,u,c,p,n]
dependency_period timeperiod_name

 }
Example Definition:
define servicedependency{

host_name WWW1
service_description Apache Web Server
dependent_host_name WWW1
dependent_service_description Main Web Site
execution_failure_criteria n
notification_failure_criteria w,u,c
}

Directive Descriptions:
dependent_host: This directive is used to identify the short name(s) of the host(s) that the dependent service "runs" on or is associated with. Multiple hosts should be separated by

commas. Leaving this directive blank can be used to create "same host" dependencies.
dependent_hostgroup: This directive is used to specify the short name(s) of the hostgroup(s) that the dependent service "runs" on or is associated with. Multiple hostgroups should be

separated by commas. The dependent_hostgroup may be used instead of, or in addition to, the dependent_host directive.
dependent_service_description:This directive is used to identify the description of the dependent service.
host_name: This directive is used to identify the short name(s) of the host(s) that the service that is being depended upon (also referred to as the master service) "runs" on or is

associated with. Multiple hosts should be separated by commas.
hostgroup_name: This directive is used to identify the short name(s) of the hostgroup(s) that the service that is being depended upon (also referred to as the master service) "runs" on

or is associated with. Multiple hostgroups should be separated by commas. The hostgroup_name may be used instead of, or in addition to, the host_name directive.
service_description: This directive is used to identify the description of the service that is being depended upon (also referred to as the master service).
inherits_parent: This directive indicates whether or not the dependency inherits dependencies of the service that is being depended upon (also referred to as the master service). In

other words, if the master service is dependent upon other services and any one of those dependencies fail, this dependency will also fail.
execution_failure_criteria: This directive is used to specify the criteria that determine when the dependent service should not be actively checked. If the master service is in one of the failure

states we specify, the dependent service will not be actively checked. Valid options are a combination of one or more of the following (multiple options are separated
with commas): o = fail on an OK state, w = fail on a WARNING state, u = fail on an UNKNOWN state, c = fail on a CRITICAL state, and p = fail on a pending state
(e.g. the service has not yet been checked). If you specify n (none) as an option, the execution dependency will never fail and checks of the dependent service will
always be actively checked (if other conditions allow for it to be). Example: If you specify o,c,u in this field, the dependent service will not be actively checked if the
master service is in either an OK, a CRITICAL, or an UNKNOWN state.

notification_failure_criteria: This directive is used to define the criteria that determine when notifications for the dependent service should not be sent out. If the master service is in one of the
failure states we specify, notifications for the dependent service will not be sent to contacts. Valid options are a combination of one or more of the following: o = fail
on an OK state, w = fail on a WARNING state, u = fail on an UNKNOWN state, c = fail on a CRITICAL state, and p = fail on a pending state (e.g. the service has not
yet been checked). If you specify n (none) as an option, the notification dependency will never fail and notifications for the dependent service will always be sent
out. Example: If you specify w in this field, the notifications for the dependent service will not be sent out if the master service is in a WARNING state.

dependency_period: This directive is used to specify the short name of the time period during which this dependency is valid. If this directive is not specified, the dependency is
considered to be valid during all times.

Service Escalation Definition
Description:

Service escalations are completely optional and are used to escalate notifications for a particular service. More information on how notification escalations work can be found here.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define serviceescalation{
host_name host_name
hostgroup_name hostgroup_name
service_descriptionservice_description
contacts contacts
contact_groups contactgroup_name
first_notification #
last_notification #
notification_interval #
escalation_period timeperiod_name
escalation_options [w,u,c,r]

 }
Example Definition:
define serviceescalation{

host_name nt-3
service_description Processor Load
first_notification 4
last_notification 0
notification_interval 30
contact_groups all-nt-admins,themanagers
}

Directive Descriptions:
host_name: This directive is used to identify the short name(s) of the host(s) that the service escalation should apply to or is associated with.
hostgroup_name: This directive is used to specify the short name(s) of the hostgroup(s) that the service escalation should apply to or is associated with. Multiple hostgroups should be separated

by commas. The hostgroup_name may be used instead of, or in addition to, the host_name directive.
service_description: This directive is used to identify the description of the service the escalation should apply to.
first_notification: This directive is a number that identifies the first notification for which this escalation is effective. For instance, if you set this value to 3, this escalation will only be used if the

service is in a non-OK state long enough for a third notification to go out.
last_notification: This directive is a number that identifies the last notification for which this escalation is effective. For instance, if you set this value to 5, this escalation will not be used if more

than five notifications are sent out for the service. Setting this value to 0 means to keep using this escalation entry forever (no matter how many notifications go out).
contacts: This is a list of the short names of the contacts that should be notified whenever there are problems (or recoveries) with this service. Multiple contacts should be separated by

commas. Useful if you want notifications to go to just a few people and don't want to configure contact groups. You must specify at least one contact or contact group in each
service escalation definition.

contact_groups: This directive is used to identify the short name of the contact group that should be notified when the service notification is escalated. Multiple contact groups should be
separated by commas. You must specify at least one contact or contact group in each service escalation definition.

notification_interval:This directive is used to determine the interval at which notifications should be made while this escalation is valid. If you specify a value of 0 for the interval, Nagios will send the
first notification when this escalation definition is valid, but will then prevent any more problem notifications from being sent out for the host. Notifications are sent out again until
the host recovers. This is useful if you want to stop having notifications sent out after a certain amount of time. Note: If multiple escalation entries for a host overlap for one or
more notification ranges, the smallest notification interval from all escalation entries is used.

escalation_period: This directive is used to specify the short name of the time period during which this escalation is valid. If this directive is not specified, the escalation is considered to be valid
during all times.

escalation_options: This directive is used to define the criteria that determine when this service escalation is used. The escalation is used only if the service is in one of the states specified in this
directive. If this directive is not specified in a service escalation, the escalation is considered to be valid during all service states. Valid options are a combination of one or more
of the following: r = escalate on an OK (recovery) state, w = escalate on a WARNING state, u = escalate on an UNKNOWN state, and c = escalate on a CRITICAL state.
Example: If you specify w in this field, the escalation will only be used if the service is in a WARNING state.

Host Dependency Definition
Description:

Host dependencies are an advanced feature of Nagios that allow you to suppress notifications for hosts based on the status of one or more other hosts. Host dependencies are optional and are

Centreon - IT & Network Monitoring http://10.0.51.71/centreon/main.php?p=20212&doc=1&page=objectdefi...

7 of 9 11/05/2013 22:24

mainly targeted at advanced users who have complicated monitoring setups. More information on how host dependencies work (read this!) can be found here.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define hostdependency{
dependent_host_name host_name
dependent_hostgroup_namehostgroup_name
host_name host_name
hostgroup_name hostgroup_name
inherits_parent [0/1]
execution_failure_criteria [o,d,u,p,n]
notification_failure_criteria [o,d,u,p,n]
dependency_period timeperiod_name

 }
Example Definition:
define hostdependency{

host_name WWW1
dependent_host_name DBASE1
notification_failure_criteria d,u
}

Directive Descriptions:
dependent_host_name: This directive is used to identify the short name(s) of the dependent host(s). Multiple hosts should be separated by commas.
dependent_hostgroup_name:This directive is used to identify the short name(s) of the dependent hostgroup(s). Multiple hostgroups should be separated by commas. The

dependent_hostgroup_name may be used instead of, or in addition to, the dependent_host_name directive.
host_name: This directive is used to identify the short name(s) of the host(s) that is being depended upon (also referred to as the master host). Multiple hosts should be separated

by commas.
hostgroup_name: This directive is used to identify the short name(s) of the hostgroup(s) that is being depended upon (also referred to as the master host). Multiple hostgroups should be

separated by commas. The hostgroup_name may be used instead of, or in addition to, the host_name directive.
inherits_parent: This directive indicates whether or not the dependency inherits dependencies of the host that is being depended upon (also referred to as the master host). In other

words, if the master host is dependent upon other hosts and any one of those dependencies fail, this dependency will also fail.
execution_failure_criteria: This directive is used to specify the criteria that determine when the dependent host should not be actively checked. If the master host is in one of the failure states we

specify, the dependent host will not be actively checked. Valid options are a combination of one or more of the following (multiple options are separated with commas):
o = fail on an UP state, d = fail on a DOWN state, u = fail on an UNREACHABLE state, and p = fail on a pending state (e.g. the host has not yet been checked). If you
specify n (none) as an option, the execution dependency will never fail and the dependent host will always be actively checked (if other conditions allow for it to be).
Example: If you specify u,d in this field, the dependent host will not be actively checked if the master host is in either an UNREACHABLE or DOWN state.

notification_failure_criteria: This directive is used to define the criteria that determine when notifications for the dependent host should not be sent out. If the master host is in one of the failure
states we specify, notifications for the dependent host will not be sent to contacts. Valid options are a combination of one or more of the following: o = fail on an UP
state, d = fail on a DOWN state, u = fail on an UNREACHABLE state, and p = fail on a pending state (e.g. the host has not yet been checked). If you specify n (none)
as an option, the notification dependency will never fail and notifications for the dependent host will always be sent out. Example: If you specify d in this field, the
notifications for the dependent host will not be sent out if the master host is in a DOWN state.

dependency_period: This directive is used to specify the short name of the time period during which this dependency is valid. If this directive is not specified, the dependency is considered
to be valid during all times.

Host Escalation Definition
Description:

Host escalations are completely optional and are used to escalate notifications for a particular host. More information on how notification escalations work can be found here.

Definition Format:

Note: Directives in red are required, while those in black are optional.

define hostescalation{
host_name host_name
hostgroup_name hostgroup_name
contacts contacts
contact_groups contactgroup_name
first_notification #
last_notification #
notification_interval#
escalation_period timeperiod_name
escalation_options [d,u,r]

 }
Example Definition:
define hostescalation{

host_name router-34
first_notification 5
last_notification 8
notification_interval 60
contact_groups all-router-admins
}

Directive Descriptions:
host_name: This directive is used to identify the short name of the host that the escalation should apply to.
hostgroup_name: This directive is used to identify the short name(s) of the hostgroup(s) that the escalation should apply to. Multiple hostgroups should be separated by commas. If this is used, the

escalation will apply to all hosts that are members of the specified hostgroup(s).
first_notification: This directive is a number that identifies the first notification for which this escalation is effective. For instance, if you set this value to 3, this escalation will only be used if the

host is down or unreachable long enough for a third notification to go out.
last_notification: This directive is a number that identifies the last notification for which this escalation is effective. For instance, if you set this value to 5, this escalation will not be used if more

than five notifications are sent out for the host. Setting this value to 0 means to keep using this escalation entry forever (no matter how many notifications go out).
contacts: This is a list of the short names of the contacts that should be notified whenever there are problems (or recoveries) with this host. Multiple contacts should be separated by

commas. Useful if you want notifications to go to just a few people and don't want to configure contact groups. You must specify at least one contact or contact group in each
host escalation definition.

contact_groups: This directive is used to identify the short name of the contact group that should be notified when the host notification is escalated. Multiple contact groups should be separated
by commas. You must specify at least one contact or contact group in each host escalation definition.

notification_interval:This directive is used to determine the interval at which notifications should be made while this escalation is valid. If you specify a value of 0 for the interval, Nagios will send the
first notification when this escalation definition is valid, but will then prevent any more problem notifications from being sent out for the host. Notifications are sent out again until
the host recovers. This is useful if you want to stop having notifications sent out after a certain amount of time. Note: If multiple escalation entries for a host overlap for one or
more notification ranges, the smallest notification interval from all escalation entries is used.

escalation_period: This directive is used to specify the short name of the time period during which this escalation is valid. If this directive is not specified, the escalation is considered to be valid
during all times.

escalation_options: This directive is used to define the criteria that determine when this host escalation is used. The escalation is used only if the host is in one of the states specified in this directive.
If this directive is not specified in a host escalation, the escalation is considered to be valid during all host states. Valid options are a combination of one or more of the following:
r = escalate on an UP (recovery) state, d = escalate on a DOWN state, and u = escalate on an UNREACHABLE state. Example: If you specify d in this field, the escalation will
only be used if the host is in a DOWN state.

Extended Host Information Definition
Description:

Extended host information entries are basically used to make the output from the status, statusmap, statuswrl, and extinfo CGIs look pretty. They have no effect on monitoring and are completely
optional.

 Tip: As of Nagios 3.x, all directives contained in extended host information definitions are also available in host definitions. Thus, you can choose to define the directives below in your host
definitions if it makes your configuration simpler. Separate extended host information definitions will continue to be supported for backward compatability.

Definition Format:

Note: Variables in red are required, while those in black are optional. However, you need to supply at least one optional variable in each definition for it to be of much use.

define hostextinfo{
host_name host_name
notes note_string
notes_url url
action_url url
icon_image image_file
icon_image_alt alt_string
vrml_image image_file
statusmap_image image_file
2d_coords x_coord,y_coord
3d_coords x_coord,y_coord,z_coord

 }

Centreon - IT & Network Monitoring http://10.0.51.71/centreon/main.php?p=20212&doc=1&page=objectdefi...

8 of 9 11/05/2013 22:24

Centreon Support - Centreon Services | Copyright © 2004-2012 Merethis
Generated in 0.229 seconds

Example Definition:
define hostextinfo{

host_name netware1
notes This is the primary Netware file server
notes_url http://webserver.localhost.localdomain/hostinfo.pl?host=netware1
icon_image novell40.png
icon_image_alt IntranetWare 4.11
vrml_image novell40.png
statusmap_image novell40.gd2
2d_coords 100,250
3d_coords 100.0,50.0,75.0
}

Variable Descriptions:
host_name: This variable is used to identify the short name of the host which the data is associated with.
notes: This directive is used to define an optional string of notes pertaining to the host. If you specify a note here, you will see the it in the extended information CGI (when you are viewing

information about the specified host).
notes_url: This variable is used to define an optional URL that can be used to provide more information about the host. If you specify an URL, you will see a link that says "Extra Host Notes" in

the extended information CGI (when you are viewing information about the specified host). Any valid URL can be used. If you plan on using relative paths, the base path will the the
same as what is used to access the CGIs (i.e. /cgi-bin/nagios/). This can be very useful if you want to make detailed information on the host, emergency contact methods, etc.
available to other support staff.

action_url: This directive is used to define an optional URL that can be used to provide more actions to be performed on the host. If you specify an URL, you will see a link that says "Extra
Host Actions" in the extended information CGI (when you are viewing information about the specified host). Any valid URL can be used. If you plan on using relative paths, the base
path will the the same as what is used to access the CGIs (i.e. /cgi-bin/nagios/).

icon_image: This variable is used to define the name of a GIF, PNG, or JPG image that should be associated with this host. This image will be displayed in the status and extended information
CGIs. The image will look best if it is 40x40 pixels in size. Images for hosts are assumed to be in the logos/ subdirectory in your HTML images directory (i.e. /usr/local/nagios
/share/images/logos).

icon_image_alt: This variable is used to define an optional string that is used in the ALT tag of the image specified by the <icon_image> argument. The ALT tag is used in the status, extended
information and statusmap CGIs.

vrml_image: This variable is used to define the name of a GIF, PNG, or JPG image that should be associated with this host. This image will be used as the texture map for the specified host in
the statuswrl CGI. Unlike the image you use for the <icon_image> variable, this one should probably not have any transparency. If it does, the host object will look a bit wierd.
Images for hosts are assumed to be in the logos/ subdirectory in your HTML images directory (i.e. /usr/local/nagios/share/images/logos).

statusmap_image:This variable is used to define the name of an image that should be associated with this host in the statusmap CGI. You can specify a JPEG, PNG, and GIF image if you want,
although I would strongly suggest using a GD2 format image, as other image formats will result in a lot of wasted CPU time when the statusmap image is generated. GD2 images
can be created from PNG images by using the pngtogd2 utility supplied with Thomas Boutell's gd library. The GD2 images should be created in uncompressed format in order to
minimize CPU load when the statusmap CGI is generating the network map image. The image will look best if it is 40x40 pixels in size. You can leave these option blank if you are
not using the statusmap CGI. Images for hosts are assumed to be in the logos/ subdirectory in your HTML images directory (i.e. /usr/local/nagios/share/images/logos).

2d_coords: This variable is used to define coordinates to use when drawing the host in the statusmap CGI. Coordinates should be given in positive integers, as they correspond to physical
pixels in the generated image. The origin for drawing (0,0) is in the upper left hand corner of the image and extends in the positive x direction (to the right) along the top of the
image and in the positive y direction (down) along the left hand side of the image. For reference, the size of the icons drawn is usually about 40x40 pixels (text takes a little extra
space). The coordinates you specify here are for the upper left hand corner of the host icon that is drawn. Note: Don't worry about what the maximum x and y coordinates that you
can use are. The CGI will automatically calculate the maximum dimensions of the image it creates based on the largest x and y coordinates you specify.

3d_coords: This variable is used to define coordinates to use when drawing the host in the statuswrl CGI. Coordinates can be positive or negative real numbers. The origin for drawing is
(0.0,0.0,0.0). For reference, the size of the host cubes drawn is 0.5 units on each side (text takes a little more space). The coordinates you specify here are used as the center of
the host cube.

Extended Service Information Definition
Description:

Extended service information entries are basically used to make the output from the status and extinfo CGIs look pretty. They have no effect on monitoring and are completely optional.

 Tip: As of Nagios 3.x, all directives contained in extended service information definitions are also available in service definitions. Thus, you can choose to define the directives below in your
service definitions if it makes your configuration simpler. Separate extended service information definitions will continue to be supported for backward compatability.

Definition Format:

Note: Variables in red are required, while those in black are optional. However, you need to supply at least one optional variable in each definition for it to be of much use.

define serviceextinfo{
host_name host_name
service_descriptionservice_description
notes note_string
notes_url url
action_url url
icon_image image_file
icon_image_alt alt_string

 }
Example Definition:
define serviceextinfo{

host_name linux2
service_description Log Anomalies
notes Security-related log anomalies on secondary Linux server
notes_url http://webserver.localhost.localdomain/serviceinfo.pl?host=linux2&service=Log+Anomalies
icon_image security.png
icon_image_alt Security-Related Alerts
}

Variable Descriptions:
host_name: This directive is used to identify the short name of the host that the service is associated with.
service_description:This directive is description of the service which the data is associated with.
notes: This directive is used to define an optional string of notes pertaining to the service. If you specify a note here, you will see the it in the extended information CGI (when you are

viewing information about the specified service).
notes_url: This directive is used to define an optional URL that can be used to provide more information about the service. If you specify an URL, you will see a link that says "Extra Service

Notes" in the extended information CGI (when you are viewing information about the specified service). Any valid URL can be used. If you plan on using relative paths, the base
path will the the same as what is used to access the CGIs (i.e. /cgi-bin/nagios/). This can be very useful if you want to make detailed information on the service, emergency
contact methods, etc. available to other support staff.

action_url: This directive is used to define an optional URL that can be used to provide more actions to be performed on the service. If you specify an URL, you will see a link that says
"Extra Service Actions" in the extended information CGI (when you are viewing information about the specified service). Any valid URL can be used. If you plan on using relative
paths, the base path will the the same as what is used to access the CGIs (i.e. /cgi-bin/nagios/).

icon_image: This variable is used to define the name of a GIF, PNG, or JPG image that should be associated with this host. This image will be displayed in the status and extended information
CGIs. The image will look best if it is 40x40 pixels in size. Images for hosts are assumed to be in the logos/ subdirectory in your HTML images directory (i.e. /usr/local/nagios
/share/images/logos).

icon_image_alt: This variable is used to define an optional string that is used in the ALT tag of the image specified by the <icon_image> argument. The ALT tag is used in the status, extended
information and statusmap CGIs.

Centreon - IT & Network Monitoring http://10.0.51.71/centreon/main.php?p=20212&doc=1&page=objectdefi...

9 of 9 11/05/2013 22:24

